• Media type: Text; E-Article; Electronic Conference Proceeding
  • Title: On β-Plurality Points in Spatial Voting Games
  • Contributor: Aronov, Boris [Author]; de Berg, Mark [Author]; Gudmundsson, Joachim [Author]; Horton, Michael [Author]
  • Published: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020
  • Language: English
  • DOI: https://doi.org/10.4230/LIPIcs.SoCG.2020.7
  • Keywords: Computational geometry ; Computational social choice ; Plurality point ; Spatial voting theory
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: Let V be a set of n points in ℝ^d, called voters. A point p ∈ ℝ^d is a plurality point for V when the following holds: for every q ∈ ℝ^d the number of voters closer to p than to q is at least the number of voters closer to q than to p. Thus, in a vote where each v ∈ V votes for the nearest proposal (and voters for which the proposals are at equal distance abstain), proposal p will not lose against any alternative proposal q. For most voter sets a plurality point does not exist. We therefore introduce the concept of β-plurality points, which are defined similarly to regular plurality points except that the distance of each voter to p (but not to q) is scaled by a factor β, for some constant 0<β⩽1. We investigate the existence and computation of β-plurality points, and obtain the following results. - Define β^*_d := sup{β : any finite multiset V in ℝ^d admits a β-plurality point}. We prove that β^*₂ = √3/2, and that 1/√d ⩽ β^*_d ⩽ √3/2 for all d⩾3. - Define β(V) := sup {β : V admits a β-plurality point}. We present an algorithm that, given a voter set V in {ℝ}^d, computes an (1-ε)⋅ β(V) plurality point in time O(n²/ε^(3d-2) ⋅ log(n/ε^(d-1)) ⋅ log²(1/ε)).
  • Access State: Open Access