• Media type: Text; E-Article; Electronic Conference Proceeding
  • Title: On the Complexity of Zero Gap MIP*
  • Contributor: Mousavi, Hamoon [Author]; Nezhadi, Seyed Sajjad [Author]; Yuen, Henry [Author]
  • Published: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020
  • Language: English
  • DOI: https://doi.org/10.4230/LIPIcs.ICALP.2020.87
  • Keywords: Multiprover Interactive Proofs ; Computability Theory ; Quantum Complexity
  • Origination:
  • University thesis:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: The class MIP^* is the set of languages decidable by multiprover interactive proofs with quantum entangled provers. It was recently shown by Ji, Natarajan, Vidick, Wright and Yuen that MIP^* is equal to RE, the set of recursively enumerable languages. In particular this shows that the complexity of approximating the quantum value of a non-local game G is equivalent to the complexity of the Halting problem. In this paper we investigate the complexity of deciding whether the quantum value of a non-local game G is exactly 1. This problem corresponds to a complexity class that we call zero gap MIP^*, denoted by MIP₀^*, where there is no promise gap between the verifier’s acceptance probabilities in the YES and NO cases. We prove that MIP₀^* extends beyond the first level of the arithmetical hierarchy (which includes RE and its complement coRE), and in fact is equal to Π₂⁰, the class of languages that can be decided by quantified formulas of the form ∀ y ∃ z R(x,y,z). Combined with the previously known result that MIP₀^{co} (the commuting operator variant of MIP₀^*) is equal to coRE, our result further highlights the fascinating connection between various models of quantum multiprover interactive proofs and different classes in computability theory.
  • Access State: Open Access