• Media type: Text; Electronic Conference Proceeding; E-Article
  • Title: Optimal Error Pseudodistributions for Read-Once Branching Programs
  • Contributor: Chattopadhyay, Eshan [Author]; Liao, Jyun-Jie [Author]
  • imprint: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020
  • Language: English
  • DOI: https://doi.org/10.4230/LIPIcs.CCC.2020.25
  • Keywords: space-bounded computation ; explicit constructions ; Derandomization
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: In a seminal work, Nisan (Combinatorica'92) constructed a pseudorandom generator for length n and width w read-once branching programs with seed length O(log n⋅ log(nw)+log n⋅log(1/ε)) and error ε. It remains a central question to reduce the seed length to O(log (nw/ε)), which would prove that 𝐁𝐏𝐋 = 𝐋. However, there has been no improvement on Nisan’s construction for the case n = w, which is most relevant to space-bounded derandomization. Recently, in a beautiful work, Braverman, Cohen and Garg (STOC'18) introduced the notion of a pseudorandom pseudo-distribution (PRPD) and gave an explicit construction of a PRPD with seed length Õ(log n⋅ log(nw)+log(1/ε)). A PRPD is a relaxation of a pseudorandom generator, which suffices for derandomizing 𝐁𝐏𝐋 and also implies a hitting set. Unfortunately, their construction is quite involved and complicated. Hoza and Zuckerman (FOCS'18) later constructed a much simpler hitting set generator with seed length O(log n⋅ log(nw)+log(1/ε)), but their techniques are restricted to hitting sets. In this work, we construct a PRPD with seed length O(log n⋅ log (nw)⋅ log log(nw)+log(1/ε)). This improves upon the construction by Braverman, Cogen and Garg by a O(log log(1/ε)) factor, and is optimal in the small error regime. In addition, we believe our construction and analysis to be simpler than the work of Braverman, Cohen and Garg.
  • Access State: Open Access