• Media type: E-Article; Text; Electronic Conference Proceeding
  • Title: Randomized Query Complexity of Sabotaged and Composed Functions
  • Contributor: Shalev, Ben-David [Author]; Kothari, Robin [Author]
  • imprint: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016
  • Language: English
  • DOI: https://doi.org/10.4230/LIPIcs.ICALP.2016.60
  • Keywords: partition bound ; lifting theorem ; Randomized query complexity ; composition theorem ; decision tree complexity
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: We study the composition question for bounded-error randomized query complexity: Is R(f circ g) = Omega(R(f)R(g))? We show that inserting a simple function h, whose query complexity is onlyTheta(log R(g)), in between f and g allows us to prove R(f circ h circ g) = Omega(R(f)R(h)R(g)). We prove this using a new lower bound measure for randomized query complexity we call randomized sabotage complexity, RS(f). Randomized sabotage complexity has several desirable properties, such as a perfect composition theorem, RS(f circ g) >= RS(f) RS(g), and a composition theorem with randomized query complexity, R(f circ g) = Omega(R(f) RS(g)). It is also a quadratically tight lower bound for total functions and can be quadratically superior to the partition bound, the best known general lower bound for randomized query complexity. Using this technique we also show implications for lifting theorems in communication complexity. We show that a general lifting theorem from zero-error randomized query to communication complexity implies a similar result for bounded-error algorithms for all total functions.
  • Access State: Open Access