• Media type: E-Article; Electronic Conference Proceeding; Text
  • Title: Parameterized (Approximate) Defective Coloring
  • Contributor: Belmonte, Rémy [Author]; Lampis, Michael [Author]; Mitsou, Valia [Author]
  • imprint: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018
  • Language: English
  • DOI: https://doi.org/10.4230/LIPIcs.STACS.2018.10
  • Keywords: Approximation ; Parameterized Complexity ; Coloring ; Treewidth
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: In Defective Coloring we are given a graph G=(V,E) and two integers chi_d,Delta^* and are asked if we can partition V into chi_d color classes, so that each class induces a graph of maximum degree Delta^*. We investigate the complexity of this generalization of Coloring with respect to several well-studied graph parameters, and show that the problem is W-hard parameterized by treewidth, pathwidth, tree-depth, or feedback vertex set, if chi_d=2. As expected, this hardness can be extended to larger values of chi_d for most of these parameters, with one surprising exception: we show that the problem is FPT parameterized by feedback vertex set for any chi_d != 2, and hence 2-coloring is the only hard case for this parameter. In addition to the above, we give an ETH-based lower bound for treewidth and pathwidth, showing that no algorithm can solve the problem in n^{o(pw)}, essentially matching the complexity of an algorithm obtained with standard techniques. We complement these results by considering the problem's approximability and show that, with respect to Delta^*, the problem admits an algorithm which for any epsilon>0 runs in time (tw/epsilon)^{O(tw)} and returns a solution with exactly the desired number of colors that approximates the optimal Delta^* within (1+epsilon). We also give a (tw)^{O(tw)} algorithm which achieves the desired Delta^* exactly while 2-approximating the minimum value of chi_d. We show that this is close to optimal, by establishing that no FPT algorithm can (under standard assumptions) achieve a better than 3/2-approximation to chi_d, even when an extra constant additive error is also allowed.
  • Access State: Open Access