• Media type: Text; E-Article; Electronic Conference Proceeding
  • Title: A Markov Chain Theory Approach to Characterizing the Minimax Optimality of Stochastic Gradient Descent (for Least Squares)
  • Contributor: Jain, Prateek [Author]; Kakade, Sham M. [Author]; Kidambi, Rahul [Author]; Netrapalli, Praneeth [Author]; Pillutla, Venkata Krishna [Author]; Sidford, Aaron [Author]
  • Published: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018
  • Language: English
  • DOI: https://doi.org/10.4230/LIPIcs.FSTTCS.2017.2
  • Keywords: Least Squares Regression ; Minimax Optimality ; Stochastic Gradient Descent
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: This work provides a simplified proof of the statistical minimax optimality of (iterate averaged) stochastic gradient descent (SGD), for the special case of least squares. This result is obtained by analyzing SGD as a stochastic process and by sharply characterizing the stationary covariance matrix of this process. The finite rate optimality characterization captures the constant factors and addresses model mis-specification.
  • Access State: Open Access