• Media type: Text; E-Article
  • Title: Mathematical analysis of a low cost mechanical ventilator respiratory dynamics enhanced by a sensor transducer (ST) based in nanostructures of Anodic Aluminium Oxide (AAO)
  • Contributor: Calderon Chavarri, Jesús Alan [Author]; Ruiz, Carlos Gianpaul Rincón [Author]; Gómez Amador, Ana María [Author]; Cardenas, Bray Jesús Martin Agreda [Author]; Anaya, Sebastián Calero [Author]; Lozano Jauregui, John Hugo [Author]; Hinostroza, Alexandr Toribio [Author]; Jiménez de Cisneros y Fonfría, Juan José [Author]
  • imprint: Digital Library Thüringen, 2022-07-08
  • Language: English
  • DOI: https://doi.org/10.3390/math10142403
  • Keywords: low-cost air flow sensor ; article ; ScholarlyArticle ; air flow medical sensor ; nanostructures ; emergency air flow sensor ; 65K10 ; COVID-19
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: Mechanical ventilation systems require a device for measuring the air flow provided to a patient in order to monitor and ensure the correct quantity of air proportionated to the patient, this device is the air flow sensor. At the beginning of the COVID-19 pandemic, flow sensors were not available in Peru because of the international supply shortage. In this context, a novel air flow sensor based on an orifice plate and an intelligent transducer was developed to form an integrated device. The proposed design was focused on simple manufacturing requirements for mass production in a developing country. CAD and CAE techniques were used in the design stage, and a mathematical model of the device was proposed and calibrated experimentally for the measured data transduction. The device was tested in its real working conditions and was therefore implemented in a breathing circuit connected to a low-cost mechanical ventilation system. Results indicate that the designed air flow sensor/transducer is a low-cost complete medical device for mechanical ventilators that is able to provide all the ventilation parameters by an equivalent electrical signal to directly display the following factors: air flow, pressure and volume over time. The evaluation of the designed sensor transducer was performed according to sundry transducer parameters such as geometrical parameters, material parameters and adaptive coefficients in the main transduction algorithm; in effect, the variety of the described results were achieved by the faster response time and robustness proportionated by transducers of nanostructures based on Anodic Aluminum Oxide (AAO), which enhanced the designed sensor/transducer (ST) during operation in intricate geographic places, such as the Andes mountains of Peru.
  • Access State: Open Access
  • Rights information: Attribution (CC BY)