Footnote:
Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
Description:
We consider random scalar hyperbolic conservation laws (RSCLs) in spatial dimension $d\ge 1$ with bounded random flux functions which are $\mathbb{P}$-a.s. Lipschitz continuous with respect to the state variable, for which there exists a unique random entropy solution (i.e., a measurable mapping from the probability space into $C(0,T;L^1(\mathbb{R}^d))$ with finite second moments). We present a convergence analysis of a Multi-Level Monte-Carlo Front-Tracking (MLMCFT) algorithm. Due to the first order convergence of front tracking, we obtain an improved complexity estimate in one space dimension.