Borsányi, Szabolcs
[Author];
Fodor, Zoltán
[Author];
Katz, Sándor D.
[Author];
Pásztor, Attila
[Author];
Szabo, Kalman
[Author];
Török, Csaba
[Author]
Static $ \overline{\mathrm{Q}}\mathrm{Q} $ pair free energy and screening masses from correlators of Polyakov loops: continuum extrapolated lattice results at the QCD physical point
You can manage bookmarks using lists, please log in to your user account for this.
Media type:
E-Article
Title:
Static $ \overline{\mathrm{Q}}\mathrm{Q} $ pair free energy and screening masses from correlators of Polyakov loops: continuum extrapolated lattice results at the QCD physical point
Contributor:
Borsányi, Szabolcs
[Author];
Fodor, Zoltán
[Author];
Katz, Sándor D.
[Author];
Pásztor, Attila
[Author];
Szabo, Kalman
[Author];
Török, Csaba
[Author]
Published:
Springer, 2015
Published in:Journal of high energy physics 1504(4), 138 (2015). doi:10.1007/JHEP04(2015)138
Footnote:
Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
Description:
We study the correlators of Polyakov loops, and the corresponding gauge invariant free energy of a static quark-antiquark pair in 2+1 flavor QCD at finite temperature. Our simulations were carried out on N$_{t}$ = 6, 8, 10, 12, 16 lattices using a Symanzik improved gauge action and a stout improved staggered action with physical quark masses. The free energies calculated from the Polyakov loop correlators are extrapolated to the continuum limit. For the free energies we use a two step renormalization procedure that only uses data at finite temperature. We also measure correlators with definite Euclidean time reversal and charge conjugation symmetry to extract two different screening masses, one in the magnetic, and one in the electric sector, to distinguish two different correlation lengths in the full Polyakov loop correlator.