• Media type: E-Article
  • Title: Anisotropic spin fluctuations in detwinned FeSe
  • Contributor: Chen, Tong [Author]; Chen, Youzhe [Author]; Zhang, Rui [Author]; Li, Yu [Author]; Rong, Yan [Author]; Wei, Yuan [Author]; Andersen, Brian M. [Author]; Hirschfeld, P. J. [Author]; Broholm, Collin [Author]; Dai, Pengcheng [Author]; Kreisel, Andreas [Author]; Lu, Xingye [Author]; Schneidewind, Astrid [Author]; Qiu, Yiming [Author]; Park, J. T. [Author]; Perring, Toby G. [Author]; Stewart, J Ross [Author]; Cao, Huibo [Author]
  • imprint: Nature Publishing Group, 2019
  • Published in: Nature materials 18(7), 709 - 716 (2019). doi:10.1038/s41563-019-0369-5
  • Language: English
  • DOI: https://doi.org/10.1038/s41563-019-0369-5
  • ISSN: 1476-4660; 1476-1122
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: Superconductivity in FeSe emerges from a nematic phase that breaks four-fold rotational symmetry in the iron plane. This phase may arise from orbital ordering, spin fluctuations or hidden magnetic quadrupolar order. Here we use inelastic neutron scattering on a mosaic of single crystals of FeSe, detwinned by mounting on a BaFe2As2 substrate to demonstrate that spin excitations are most intense at the antiferromagnetic wave vectors QAF = (±1, 0) at low energies E = 6–11 meV in the normal state. This two-fold (C2) anisotropy is reduced at lower energies, 3–5 meV, indicating a gapped four-fold (C4) mode. In the superconducting state, however, the strong nematic anisotropy is again reflected in the spin resonance (E = 3.6 meV) at QAF with incommensurate scattering around 5–6 meV. Our results highlight the extreme electronic anisotropy of the nematic phase of FeSe and are consistent with a highly anisotropic superconducting gap driven by spin fluctuations.
  • Access State: Open Access