• Media type: E-Book; Report
  • Title: Intake Structure Operation Study: Elk Creek Dam, Oregon
  • Contributor: Howington, Stacy E. [Author]
  • imprint: U.S. Army Engineer Research and Development Center (ERDC); Hydraulics Laboratory (HL); Vicksburg, Mississippi, 1990
  • Language: English
  • DOI: https://doi.org/20.500.11970/112499
  • Keywords: Mathematical models ; Selective withdrawal ; Rougue River Basin ; Elk Creek Dam ; Intakes ; Stratification ; Reservoir operation ; Oregon ; Hydraulic models ; Ingenieurwissenschaften (620) ; Water quality ; Simultaneous withdrawal
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: Source: https://erdc-library.erdc.dren.mil/jspui/ ; Elk Creek Dam, presently under construction in the Rogue River Basin, Oregon, will be operated for multiple purposes, including flood control and fish and wildlife enhancement. Flood control will dictate the quantity of water released; and fish and wildlife enhancement, the quality. Selective withdrawal will be used to control the dam's release water temperature, which is important to the anadromous fishery in the Rogue River. When selective withdrawal occurs through more than one level of intakes, the unique, single-wet-well intake structure will resemble an intake manifold in a density-stratified fluid. To operate the structure effectively for release temperature, the site-specific characteristics of selective withdrawal and simultaneous, multiple-level withdrawal were required. A 1:20-scale physical model of the unique intake structure and near field topography was built and tested, and the results of those tests are reported herein. The model was also employed to detect any hydraulic instabilities characterized by pressure fluctuations within the structure. The testing indicated no hydraulic instabilities and produced reasonable site-specific descriptions of selective withdrawal and simultaneous, multiple-level withdrawal. From these data, an existing one-dimensional mathematical reservoir model was modified to predict, from total discharge, a release temperature objective, and in-lake temperature distribution the intake gate openings that will most closely achieve the desired release temperature.
  • Access State: Open Access