• Media type: Electronic Thesis; E-Book; Doctoral Thesis
  • Title: Iterative matrix-free computation of Hopf bifurcations as Neimark-Sacker points of fixed point iterations
  • Contributor: Garcia, Ignacio de Mateo [Author]
  • Published: Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2012-03-12
  • Language: English
  • DOI: https://doi.org/10.18452/16478
  • Keywords: Iterative ; Hopf ; 27 Mathematik ; FitzHugh-Nagumo ; Center Manifold Theorem ; Neimark-Sacker ; FitzHugh-Nagumos
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: Klassische Methoden für die direkte Berechnung von Hopf Punkten und andere Singularitaten basieren auf der Auswertung und Faktorisierung der Jakobimatrix. Dieses stellt ein Hindernis dar, wenn die Dimensionen des zugrundeliegenden Problems gross genug ist, was oft bei Partiellen Diferentialgleichungen der Fall ist. Die betrachteten Systeme haben die allgemeine Darstellung f ( x(t), α) für t grösser als 0, wobei x die Zustandsvariable, α ein beliebiger Parameter ist und f glatt in Bezug auf x und α ist. In der vorliegenden Arbeit wird ein Matrixfreies Schema entwicklet und untersucht, dass ausschliesslich aus Produkten aus Jakobimatrizen und Vektoren besteht, zusammen mit der Auswertung anderer Ableitungsvektoren erster und zweiter Ordnung. Hiermit wird der Grenzwert des Parameters α, der zuständig ist für das Verlieren der Stabilität des Systems, am Hopfpunkt bestimmt. In dieser Arbeit wird ein Gleichungssystem zur iterativen Berechnung des Hopfpunktes aufgestellt. Das System wird mit einer skalaren Testfunktion φ, die aus einer Projektion des kritischen Eigenraums bestimmt ist, ergänzt. Da das System f aus einer räumlichen Diskretisierung eines Systems Partieller Differentialgleichungen entstanden ist, wird auch in dieser Arbeit die Berechung des Fehlers, der bei der Diskretisierung unvermeidbar ist, dargestellt und untersucht. Zur Bestimmung der Hopf-Bedingungen wird ein einzelner Parameter gesteuert. Dieser Parameter wird unabhängig oder zusammen mit dem Zustandsvektor in einem gedämpften Iterationsschritt neu berechnet. Der entworfene Algorithmus wird für das FitzHugh-Nagumo Model erprobt. In der vorliegenden Arbeit wird gezeigt, wie für einen kritischen Strom, das Membranpotential eine fortschreitende Welle darstellt. ; Classical methods for the direct computation of Hopf bifurcation points and other singularities rely on the evaluation and factorization of Jacobian matrices. In view of large scale problems arising from PDE discretization systems of the form f( x (t), α ), for t bigger than 0, where x are ...
  • Access State: Open Access
  • Rights information: Attribution - Share Alike (CC BY-SA)