• Media type: E-Article
  • Title: Exploring Symbioses by Single-Cell Genomics
  • Contributor: Kamke, Janine [Author]; Bayer, Kristina [Author]; Woyke, Tanja [Author]; Hentschel, Ute [Author]
  • imprint: Marine Biological Laboratory, 2012
  • Language: English
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: Single-cell genomics has advanced the field of microbiology from the analysis of microbial metagenomes where information is “drowning in a sea of sequences,” to recognizing each microbial cell as a separate and unique entity. Single-cell genomics employs Phi29 polymerase-mediated whole-genome amplification to yield microgram-range genomic DNA from single microbial cells. This method has now been applied to a handful of symbiotic systems, including bacterial symbionts of marine sponges, insects (grasshoppers, termites), and vertebrates (mouse, human). In each case, novel insights were obtained into the functional genomic repertoire of the bacterial partner, which, in turn, led to an improved understanding of the corresponding host. Single-cell genomics is particularly valuable when dealing with uncultivated microorganisms, as is still the case for many bacterial symbionts. In this review, we explore the power of single-cell genomics for symbiosis research and highlight recent insights into the symbiotic systems that were obtained by this approach.
  • Access State: Open Access