Riethdorf, Jan-Rainer
[Author];
Nürnberg, Dirk
[Author];
Max, L.
[Author];
Tiedemann, R.
[Author];
Gorbarenko, S. A.
[Author];
Malakhov, M. I.
[Author]
Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr
You can manage bookmarks using lists, please log in to your user account for this.
Media type:
E-Article
Title:
Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr
Contributor:
Riethdorf, Jan-Rainer
[Author];
Nürnberg, Dirk
[Author];
Max, L.
[Author];
Tiedemann, R.
[Author];
Gorbarenko, S. A.
[Author];
Malakhov, M. I.
[Author]
Published:
Copernicus Publications (EGU), 2013
Language:
English
DOI:
https://doi.org/10.5194/cp-9-1345-2013
Origination:
Footnote:
Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
Description:
We used piston cores recovered in the western Bering Sea to reconstruct millennial-scale changes in marine productivity and terrigenous matter supply over the past similar to 180 kyr. Based on a geochemical multi-proxy approach, our results indicate closely interacting processes controlling marine productivity and terrigenous matter supply comparable to the situation in the Okhotsk Sea. Overall, terrigenous inputs were high, whereas export production was low. Minor increases in marine productivity occurred during intervals of Marine Isotope Stage 5 and interstadials, but pronounced maxima were recorded during interglacials and Termination I. The terrigenous material is suggested to be derived from continental sources on the eastern Bering Sea shelf and to be subsequently transported via sea ice, which is likely to drive changes in surface productivity, terrigenous inputs, and upper-ocean stratification. From our results we propose glacial, deglacial, and interglacial scenarios for environmental change in the Bering Sea. These changes seem to be primarily controlled by insolation and sea-level forcing which affect the strength of atmospheric pressure systems and sea-ice growth. The opening history of the Bering Strait is considered to have had an additional impact. High-resolution core logging data (color b*, XRF scans) strongly correspond to the Dansgaard-Oeschger climate variability registered in the NGRIP ice core and support an atmospheric coupling mechanism of Northern Hemisphere climates.