• Media type: E-Article
  • Title: Biophysical and economic limits to negative CO2 emissions
  • Contributor: Smith, P. [Author]; Davis, S. [Author]; Creutzig, F. [Author]; Fuss, S. [Author]; Minx., J. [Author]; Gabrielle, B. [Author]; Kato, E. [Author]; Jackson, R. [Author]; Cowie, A. [Author]; Kriegler, E. [Author]; Vuuren, D. [Author]; Rogelj, J. [Author]; Ciais, P. [Author]; Milne, J. [Author]; Canadell, J. [Author]; McCollum, D. [Author]; Peters, G. [Author]; Andrew, R. [Author]; Krey, V. [Author]; Shrestha, G. [Author]; Friedlingstein, P. [Author]; Gasser, T. [Author]; Grübler, A. [Author]; Heidug, W. [Author]; [...]
  • imprint: Publication Database PIK (Potsdam Institute for Climate Impact Research), 2016
  • Published in: Nature Climate Change
  • Language: Not determined
  • DOI: https://doi.org/10.1038/NCLIMATE2870
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: To have a >50% chance of limiting warming below 2 °C, most recent scenarios from integrated assessment models (IAMs) require large-scale deployment of negative emissions technologies (NETs). These are technologies that result in the net removal of greenhouse gases from the atmosphere. We quantify potential global impacts of the different NETs on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application. Resource implications vary between technologies and need to be satisfactorily addressed if NETs are to have a significant role in achieving climate goals.