• Media type: E-Book; Electronic Thesis; Doctoral Thesis
  • Title: Complexity of some polyhedral enumeration problems
  • Contributor: Tiwary, Hans Raj [Author]
  • Published: Scientific publications of the Saarland University (UdS), 2008
  • Language: German
  • DOI: https://doi.org/10.22028/D291-25948
  • Keywords: Polytop ; polytope ; halfspace representation ; Eckenaufzählung ; Eckendarstellung ; graph isomorphism ; Ecke ; Enumeration ; convex hull ; Komplexität ; Graphisomorphie ; Polyeder ; vertex enumeration ; Halbraumdarstellung ; vertex representation ; Halbraum ; Konvexe Hülle ; Isomorphismus
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: In this thesis we consider the problem of converting the halfspace representation of a polytope to its vertex representation - the Vertex Enumeration problem - and various other basic and closely related computational problems about polytopes. The problem of converting the vertex representation to halfspace representation - the Convex Hull problem - is equivalent to vertex enumeration. In chapter 3 we prove that enumerating the vertices of an unbounded H-polyhedron P is NP-hard even if P has only 0=1 vertices. This strengthens a previous result of Khachiyan et. al. [KBB+06]. In chapters 4 to 6 we prove that many other operations on polytopes like computing the Minkowski sum, intersection, projection, etc. are NP-hard for many representations and equivalent to vertex enumeration in many others. In chapter 7 we prove various hardness results about a cone covering problem where one wants to check whether a given set of polyhedral cones cover another given set. We prove that in general this is an NP-complete problem and includes important problems like vertex enumeration and hypergraph transversal as special cases. Finally, in chapter 8 we relate the complexity of vertex enumeration to graph isomorphism by proving that a certain graph isomorphism hard problem is graph isomorphism easy if and only if vertex enumeration is graph isomorphism easy. We also answer a question of Kaibel and Schwartz about the complexity of checking self-duality of a polytope. ; In dieser Arbeit betrachten wir das Problem, die Halbraumdarstellung eines Polytops in seine Eckendarstellung umzuwandeln, - das sogenannte Problem der Eckenaufzählung - sowie viele andere grundlegende und eng verwandte Berechnungsprobleme für Polytope. Das Problem, die Eckendarstellung in die Halbraumdarstellung umzuwandeln - das sogenannte Konvexe-Hüllen Problem - ist äquivalent zum Problem der Eckenaufzählung. In Kapitel 3 zeigen wir, dass Eckenaufzählung für ein unbeschränktes H-Polyeder P selbst dann NP-schwer ist, wenn P nur 0=1-Ecken hat. Das verbessert ein ...
  • Access State: Open Access