• Media type: Text; Electronic Thesis; Still Image; E-Book
  • Title: Extracting cell complexes from 4-dimensional digital images ; Généralisation à dimension 4 des méthodes pour manipuler des images numériques binaires
  • Contributor: Pacheco-Martínez, Ana María [Author]
  • Published: theses.fr, 2012-07-10
  • Language: English
  • Keywords: Modélisation géométrique ; Géométrie numérique ; Informatique graphique ; Géométrie discrète
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: Une image numérique peut être définie comme un ensemble de n-xels sur une grille constituée de n-cubes. La segmentation consiste à calculer une partition d'une image en régions. Les n-xels ayant des caractéristiques similaires (couleur, intensité, etc.) sont regroupés. Schématiquement, à chaque n-xel est attribuée une étiquette, et chaque région de l'image est constituée de n-xels de même étiquette. Les méthodes "de type" Marching cubes et Kenmochi et al. construisent des complexes représentant la topologie de la région d'intérêt d'une image numérique binaire de dimension 3. Dans la première méthode, l'algorithme construit un complexe simplicial, dont 0-cellules sont des points des arêtes de la grille duale. Dans la deuxième méthode, les auteurs construisent un complexe cellulaire sur une grille duale, c.a.d les 0-cellules du complexe sont des sommets de la grille duale. Afin de construire le complexe, Kenmochi et al. calculent (à rotations près) les différentes configurations de sommets blancs et noirs d'un cube, puis, ils construisent les enveloppes convexes des points noirs de ces configurations. Ces enveloppes convexes définissent les cellules du complexe, à rotations près. Le travail développé dans cette thèse étend la méthode de Kenmochi et al. en dimension 4. L'objectif est de construire un complexe cellulaire à partir d'une image numérique binaire définie sur une grille duale. Nous calculons d'abord les différentes configurations de sommets blancs et noirs d'un 4-cube (à isométries près), puis, nous construisons des enveloppes convexes définies par ces configurations. Ces enveloppes convexes sont construites par déformation du 4-cube d'origine, et nous distinguon ; A digital image can be defined as a set of n-xels on a grid made up by n-cubes. Segmentation consists in computing a partition of an image into regions. The n-xels having similar characteristics (color, intensity, etc.) are regrouped. Schematically, each n-xel is assigned a label, and each region of the image is made up by n-xels with the same ...
  • Access State: Open Access