Chen, Yuting
[Author]
;
Châtenay-Malabry, Ecole centrale de Paris
[Contributor];
Cournède, Paul-Henry
[Contributor]
Inférence bayésienne dans les modèles de croissance de plantes pour la prévision et la caractérisation des incertitudes ; Bayesian inference in plant growth models for prediction and uncertainty assessment
You can manage bookmarks using lists, please log in to your user account for this.
Media type:
E-Book;
Electronic Thesis;
Text
Title:
Inférence bayésienne dans les modèles de croissance de plantes pour la prévision et la caractérisation des incertitudes ; Bayesian inference in plant growth models for prediction and uncertainty assessment
Footnote:
Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
Description:
La croissance des plantes en interaction avec l'environnement peut être décrite par des modèles mathématiques. Ceux-ci présentent des perspectives prometteuses pour un nombre considérable d'applications telles que la prévision des rendements ou l'expérimentation virtuelle dans le contexte de la sélection variétale. Dans cette thèse, nous nous intéressons aux différentes solutions capables d'améliorer les capacités prédictives des modèles de croissance de plantes, en particulier grâce à des méthodes statistiques avancées. Notre contribution se résume en quatre parties.Tout d'abord, nous proposons un nouveau modèle de culture (Log-Normal Allocation and Senescence ; LNAS). Entièrement construit dans un cadre probabiliste, il décrit seulement les processus écophysiologiques essentiels au bilan de la biomasse végétale afin de contourner les problèmes d'identification et d'accentuer l'évaluation des incertitudes. Ensuite, nous étudions en détail le paramétrage du modèle. Dans le cadre Bayésien, nous mettons en œuvre des méthodes Monte-Carlo Séquentielles (SMC) et des méthodes de Monte-Carlo par Chaînes de Markov (MCMC) afin de répondre aux difficultés soulevées lors du paramétrage des modèles de croissance de plantes, caractérisés par des équations dynamiques non-linéaires, des données rares et un nombre important de paramètres. Dans les cas où la distribution a priori est peu informative, voire non-informative, nous proposons une version itérative des méthodes SMC et MCMC, approche équivalente à une variante stochastique d'un algorithme de type Espérance-Maximisation, dans le but de valoriser les données d'observation tout en préservant la robustesse des méthodes Bayésiennes. En troisième lieu, nous soumettons une méthode d'assimilation des données en trois étapes pour résoudre le problème de prévision du modèle. Une première étape d'analyse de sensibilité permet d'identifier les paramètres les plus influents afin d'élaborer une version plus robuste de modèle par la méthode de sélection de modèles à l'aide de ...