• Media type: E-Book; Electronic Thesis; Text
  • Title: Méthodes de réduction de dimension pour la construction d'indicateurs de qualité de vie ; Dimension reduction methods to construct quality of life indicators
  • Contributor: Labenne, Amaury [Author]
  • imprint: theses.fr, 2015-11-20
  • Language: French
  • Keywords: Réduction de dimension ; Classification de variables ; Dimension reduction ; Composite indicators ; Analyses factorielles ; Indicateurs composites ; Méthodes multi-tableaux ; Multi-table method ; Mixed data ; Qualité de vie ; Variable clustering ; Factor analysis ; Données mixtes ; Quality of life
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: L’objectif de cette thèse est de développer et de proposer de nouvellesméthodes de réduction de dimension pour la construction d’indicateurs composites dequalité de vie à l’échelle communale. La méthodologie statistique développée met l’accentsur la prise en compte de la multidimensionnalité du concept de qualité de vie, avecune attention particulière sur le traitement de la mixité des données (variables quantitativeset qualitatives) et l’introduction des conditions environnementales. Nous optonspour une approche par classification de variables et pour une méthode multi-tableaux(analyse factorielle multiple pour données mixtes). Ces deux méthodes permettent deconstruire des indicateurs composites que nous proposons comme mesure des conditionsde vie à l’échelle communale. Afin de faciliter l’interprétation des indicateurscomposites construits, une méthode de sélection de variables de type bootstrap estintroduite en analyse factorielle multiple. Enfin nous proposons la méthode hclustgeode classification d’observations qui intègre des contraintes de proximité géographiqueafin de mieux appréhender la spatialité des phénomènes mis en jeu. ; The purpose of this thesis is to develop and suggest new dimensionreduction methods to construct composite indicators on a municipal scale. The developedstatistical methodology highlights the consideration of the multi-dimensionalityof the quality of life concept, with a particular attention on the treatment of mixeddata (quantitative and qualitative variables) and the introduction of environmentalconditions. We opt for a variable clustering approach and for a multi-table method(multiple factorial analysis for mixed data). These two methods allow to build compositeindicators that we propose as a measure of living conditions at the municipalscale. In order to facilitate the interpretation of the created composite indicators, weintroduce a method of selections of variables based on a bootstrap approach. Finally,we suggest the clustering of observations method, named hclustgeo, which ...
  • Access State: Open Access