• Media type: Text; Electronic Thesis; E-Book
  • Title: Analyse théorique et numérique de dynamiques non-réversibles en physique statistique computationnelle ; Theoretical and numerical analysis of non-reversible dynamics in computational statistical physics
  • Contributor: Roussel, Julien [Author]
  • Published: theses.fr, 2018-11-27
  • Language: English
  • Keywords: Variance reduction ; Analyse numérique ; Équations différentielles stochastiques ; Stochastic differential equations ; Réduction de variance ; Statistical physics ; Piecewise Deterministic Markov Processes ; Hors-Équilibre ; Nonequilibirum ; Numerical analysis ; Physique statistique ; Processus de Markov déterministes par morceaux
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: Cette thèse traite de quatre sujets en rapport avec les dynamiques non-réversibles. Chacun fait l'objet d'un chapitre qui peut être lu indépendamment.Le premier chapitre est une introduction générale présentant les problématiques et quelques résultats majeurs de physique statistique computationnelle.Le second chapitre concerne la résolution numérique d'équations aux dérivées partielles hypoelliptiques, c'est-à-dire faisant intervenir un opérateur différentiel inversible mais non coercif. Nous prouvons la consistance de la méthode de Galerkin ainsi que des taux de convergence pour l'erreur. L'analyse est également conduite dans le cas d'une formulation point-selle, qui s'avère être la plus adaptée dans les cas qui nous intéressent. Nous démontrons que nos hypothèses sont satisfaites dans un cas simple et vérifions numériquement nos prédictions théoriques sur cet exemple.Dans le troisième chapitre nous proposons une stratégie générale permettant de construire des variables de contrôle pour des dynamiques hors-équilibre. Cette méthode permet en particulier de réduire la variance des estimateurs de coefficient de transport par moyenne ergodique. Cette réduction de variance est quantifiée dans un régime perturbatif. La variable de contrôle repose sur la solution d'une équation aux dérivées partielles. Dans le cas de l'équation de Langevin cette équation est hypoelliptique, ce qui motive le chapitre précédent. La méthode proposée est testée numériquement sur trois exemples.Le quatrième chapitre est connecté au troisième puisqu'il utilise la même idée de variable de contrôle. Il s'agit d'estimer la mobilité d'une particule dans le régime sous-amorti, où la dynamique est proche d'être Hamiltonienne. Ce travail a été effectué en collaboration avec G. Pavliotis durant un séjour à l'Imperial College London.Le dernier chapitre traite des processus de Markov déterministes par morceaux, qui permettent l'échantillonnage de mesure en grande dimension. Nous prouvons la convergence exponentielle vers l'équilibre de plusieurs ...
  • Access State: Open Access