• Media type: E-Book; Electronic Thesis; Text
  • Title: Théorie des matrices aléatoires pour l'apprentissage automatique en grande dimension et les réseaux de neurones ; A random matrix framework for large dimensional machine learning and neural networks
  • Contributor: Liao, Zhenyu [Author]
  • imprint: theses.fr, 2019-09-30
  • Language: English
  • Keywords: Random matrix theory ; Théorie des matrices aléatoires ; Réseaux de neurones ; Neural networks ; Apprentissage automatique ; Machine learning
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: Le "Big Data'' et les grands systèmes d'apprentissage sont omniprésents dans les problèmes d'apprentissage automatique aujourd’hui. Contrairement à l'apprentissage de petite dimension, les algorithmes d'apprentissage en grande dimension sont sujets à divers phénomènes contre-intuitifs et se comportent de manière très différente des intuitions de petite dimension sur lesquelles ils sont construits. Cependant, en supposant que la dimension et le nombre des données sont à la fois grands et comparables, la théorie des matrices aléatoires (RMT) fournit une approche systématique pour évaluer le comportement statistique de ces grands systèmes d'apprentissage, lorsqu'ils sont appliqués à des données de grande dimension. L’objectif principal de cette thèse est de proposer un schéma d'analyse basé sur la RMT, pour une grande famille de systèmes d’apprentissage automatique: d'évaluer leurs performances, de mieux les comprendre et finalement les améliorer, afin de mieux gérer les problèmes de grandes dimensions aujourd'hui.Précisément, nous commençons par exploiter la connexion entre les grandes matrices à noyau, les projection aléatoires non-linéaires et les réseaux de neurones aléatoires simples. En considérant que les données sont tirées indépendamment d'un modèle de mélange gaussien, nous fournissons une caractérisation précise des performances de ces systèmes d'apprentissage en grande dimension, exprimée en fonction des statistiques de données, de la dimensionnalité et, surtout, des hyper-paramètres du problème. Lorsque des algorithmes d'apprentissage plus complexes sont considérés, ce schéma d'analyse peut être étendu pour accéder à de systèmes d'apprentissage qui sont définis (implicitement) par des problèmes d'optimisation convexes, lorsque des points optimaux sont atteints. Pour trouver ces points, des méthodes d'optimisation telles que la descente de gradient sont régulièrement utilisées. À cet égard, dans le but d'avoir une meilleur compréhension théorique des mécanismes internes de ces méthodes d'optimisation ...
  • Access State: Open Access