• Media type: Text; Electronic Thesis; E-Book
  • Title: Aide au diagnostic du cancer de la prostate à partir d'IRM multiparamétrique à l'aide de l'apprentissage profond ; AI-based diagnosis of prostate cancer from multiparametric MRI
  • Contributor: Hamzaoui, Dimitri [Author]
  • Published: theses.fr, 2023-06-26
  • Language: English
  • Keywords: Segmentation ; Imagerie médicale ; Intelligence artificielle ; Inter-expert variability ; Variabilité inter-expert ; Medical imaging ; Machine learning ; Artificial intelligence ; Consensus ; Apprentissage profond ; Prostate-cancer
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: L'objectif de notre travail est le développement d'une méthode de détection du cancer de la prostate à partir de séquences IRM multiparamétriques. Dans cette thèse, nous détaillons les principales sources de difficultés dans le développement d'une telle méthode ainsi que les moyens de les surmonter.Le chapitre 2 traite de la variabilité inter-experts des estimations de volume et des segmentations zonales de la prostate, deux facteurs importants pour l'établissement du diagnostic et la construction des bases de données nécessaires à l'entraînement des méthodes automatiques. Nous exploitons une base de données de 40 cas pour lesquels 7 radiologues de différents niveaux ont fourni des segmentations zonales ainsi que des estimations de volume. Nous évaluons leurs différences en fonction de l'expérience des cliniciens, des méthodes d'estimation utilisées et de certaines caractéristiques des prostates considérées. Pour la génération des masques de segmentation, nous montrons que la variabilité est la plus élevée à l'apex et à la base de la prostate, et qu'elle est indépendante de l'expérience des radiologues. En outre, nous montrons que la méthode la plus robuste d'estimation du volume d'une prostate consiste à le calculer directement à partir de sa segmentation.Dans le chapitre 3, nous présentons une nouvelle méthode pour fusionner les masques de segmentation binaires fournis par plusieurs annotateurs en une seule segmentation consensuelle. L'algorithme MACCHIATO repose sur la combinaison de moyennes de Fréchet locales pour des distances bien choisies. Il diffère des deux principales méthodes existantes de détermination du consensus (moyenne et STAPLE) sur deux points : contrairement à la moyenne, il n'est pas calculé au niveau du voxel, et contrairement à STAPLE, il est indépendant de la taille du fond. Nous présentons les différences entre les consensus produits par les trois méthodes et montrons que notre méthode peut être placée entre les deux autres méthodes en ce qui concerne la taille du consensus. En outre, ...
  • Access State: Open Access