• Media type: Text; Electronic Thesis; E-Book
  • Title: La détection d'anomalies comme outil de renforcement d'analyse des données et de prédiction dans l'éducation ; Outlier Detection as a Tool for Reinforcing Data Analysis and Prediction in Education
  • Contributor: Novoseltseva, Daria [Author]
  • Published: theses.fr, 2022-02-02
  • Language: English
  • Keywords: Analyse de l'apprentissage ; Learning analytics ; Outlier ; Exploration de données éducatives ; Anomalies ; Détection des valeurs anormales ; Educational data mining ; Outlier detection ; Valeurs anormales
  • Origination:
  • Footnote: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Description: Les établissements d'enseignement cherchent à concevoir des mécanismes efficaces pour améliorer les résultats scolaires, renforcer le processus d'apprentissage et éviter l'abandon scolaire. L'analyse et la prédiction des performances des étudiants au cours de leurs études peuvent mettre en évidence certaines lacunes d'une formation et détecter les étudiants ayant des problèmes d'apprentissage. Il s'agit donc de développer des techniques et des modèles basés sur des données qui visent à améliorer l'enseignement et l'apprentissage. Les modèles classiques ignorent généralement les étudiants présentant des comportements et incohérences inhabituels, bien qu'ils puissent fournir des informations importantes aux experts du domaine et améliorer les modèles de prédiction. Les profils atypiques dans l'éducation sont à peine explorés et leur impact sur les modèles de prédiction n'a pas encore été étudié dans la littérature. Cette thèse vise donc à étudier les valeurs anormales dans les données éducatives et à étendre les connaissances existantes à leur sujet. La thèse présente trois études de cas de détection de données anormales pour différents contextes éducatifs et modes de représentation des données (jeu de données numériques pour une université allemande, jeu de données numériques pour une université russe, jeu de données séquentiel pour les écoles d'infirmières françaises). Pour chaque cas, l'approche de prétraitement des données est proposée en tenant compte des particularités du jeu de données. Les données préparées ont été utilisées pour détecter les valeurs anormales dans des conditions de vérité terrain inconnue. Les caractéristiques des valeurs anormales détectées ont été explorées et analysées, ce qui a permis d'étendre les connaissances sur le comportement des étudiants dans un processus d'apprentissage. L'une des principales tâches dans le domaine de l'éducation est de développer des mécanismes essentiels qui permettront d'améliorer les résultats scolaires et de réduire l'abandon scolaire. Ainsi, il est ...
  • Access State: Open Access