Description:
Efficiency-enhancing measures are evaluated for a serial hybrid fuel cell vehicle over a drive cycle. The regarded powertrain consists of fuel cell system, battery, DC-DC converter, inverter and electrical machine. Within the fuel cell system, the air supply is the largest parasitic load. For the lowest dissipation, different air compression architectures are optimized by a scaling algorithm and compared. Phase switching reduces DC-DC losses. Additionally, a variable DC-link voltage increases efficiency of electrical machine and inverter. Dynamic Programming (DP) is used to evaluate these measures. The DP was extended by start-up and shutdown energy of the fuel cell system to model realistic cycle consumptions. Finally, all these efficiency enhancing measures lead to a reduction of energy consumption by 6.4 % for the serial hybrid fuel cell vehicle over a drive cycle.