Description:
The intrinsic protein fluorescence of the polygalacturonase from Colletotrichium lindemuthianum was exploited in stopped-flow experiments aimed at elucidating the kinetic mechanism for this enzyme. Binding of the polymeric substrate polygalacturonic acid (PGA) essentially produced a triphasic fluorescence profile. There was an initial rapid quench in fluorescence, consistent with the rapid formation of the enzyme-substrate complex, with an equilibrium constant of about 8 x 10(-4)% (w/v) PGA (about 0.27 microM). There then followed a near-constant fluorescence phase, attributable to turnover of the enzyme-substrate complex as a steady-state intermediate. As the concentration of the steady-state intermediate became depleted, towards the end of the reaction, there was a partial return of the fluorescence intensity. This phase is attributed to a final, single turnover of the enzyme at the end of the reaction. The fluorescence intensity does not return to its original level due to product remaining bound at the end of the reaction.