• Media type: E-Article
  • Title: Laminar Boundary Layer behind Strong Shock Moving with Nonuniform Velocity
  • Contributor: Mirels, Harold; Hamman, Jesse
  • imprint: AIP Publishing, 1962
  • Published in: The Physics of Fluids
  • Language: English
  • DOI: 10.1063/1.1706496
  • ISSN: 0031-9171
  • Keywords: General Engineering
  • Origination:
  • Footnote:
  • Description: <jats:p>The laminar wall boundary layer behind a strong shock moving with nonuniform velocity into a stationary fluid has been investigated. In particular, two-dimensional and axisymmetric boundary layers behind plane, cylindrical, and spherical shocks which move according to the power law xs = Ctm have been considered. The wall boundary layers associated with blast waves are special cases of the class of problems treated herein. It was assumed that the fluid is a perfect gas, that viscosity is proportional to temperature, and that the wall surface temperature is small relative to the temperature in the free stream. The resulting boundary-layer equations were simplified by expanding the dependent variables in powers of a nondimensional distance measured from the shock. The zero-order flow corresponds, at each instant, to a two-dimensional boundary layer behind a shock wave moving with uniform velocity. Numerical solutions of the first-order equations have been found for several cases of interest, and the results for wall shear and heat transfer have been tabulated and discussed.</jats:p>