• Media type: E-Article
  • Title: Study of strong cross-field sheared flow with the vorticity probe in the Large Plasma Device
  • Contributor: Perez, Jean C.; Horton, W.; Bengtson, Roger D.; Carter, Troy
  • Published: AIP Publishing, 2006
  • Published in: Physics of Plasmas, 13 (2006) 5
  • Language: English
  • DOI: 10.1063/1.2179423
  • ISSN: 1070-664X; 1089-7674
  • Keywords: Condensed Matter Physics
  • Origination:
  • Footnote:
  • Description: <jats:p>This work reports evidence for the existence of coherent structures in steady-state shear-flow driven plasmas in the Large Plasma Device [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] facility at UCLA. The measurements are performed with the vorticity probe (VP), a probe that directly measures the plasma vorticity associated with the E×B shear flow by means of a method that is both simpler and more accurate than the methods used in neutral fluids. Because the rate of change of vorticity is a key quantity in nonlinear models, as in the Hasegawa-Mima equation, its direct measurement is critical for verification purposes. The physical origin of the rate of change of plasma vorticity from E×B flow is the divergence of the ion polarization current. Vortex coherent structures occur when the vorticity is a nonlinear function of the stream function. Statistical properties of vorticity are reported and shown to be consistent with the types of coherent structures created by the Kelvin-Helmholtz instability. Comparisons of the measured vortex characteristics with the results from nonlinear simulations of the systems is described.</jats:p>