• Media type: E-Article
  • Title: Temperature and bias-voltage dependence of atomic-layer-deposited HfO2-based magnetic tunnel junctions
  • Contributor: Fabretti, Savio; Zierold, Robert; Nielsch, Kornelius; Voigt, Carmen; Ronning, Carsten; Peretzki, Patrick; Seibt, Michael; Thomas, Andy
  • imprint: AIP Publishing, 2014
  • Published in: Applied Physics Letters
  • Language: English
  • DOI: 10.1063/1.4896994
  • ISSN: 0003-6951; 1077-3118
  • Keywords: Physics and Astronomy (miscellaneous)
  • Origination:
  • Footnote:
  • Description: <jats:p>Magnetic tunnel junctions with HfO2 tunnel barriers were prepared through a combination of magnetron sputtering and atomic layer deposition. We investigated the tunneling transport behavior, including the tunnel magnetoresistance ratio and the current-voltage characteristics between room temperature and 2 K. Here, we achieved a tunneling magneto resistance ratio of 10.3% at room temperature and 19.3% at 2 K. Furthermore, we studied the bias-voltage and temperature dependencies and compared the results with those of commonly used alumina- and magnesia-based magnetic tunnel junctions. We observed a polycrystalline/amorphous electrode-barrier system via high-resolution transmission electron microscopy.</jats:p>