• Media type: E-Article
  • Title: Transformations of body-centered cubic crystals composed of hard or soft spheres to liquids or face-centered cubic crystals
  • Contributor: Wang, Feng; Han, Yilong
  • Published: AIP Publishing, 2019
  • Published in: The Journal of Chemical Physics, 150 (2019) 1
  • Language: English
  • DOI: 10.1063/1.5059358
  • ISSN: 0021-9606; 1089-7690
  • Keywords: Physical and Theoretical Chemistry ; General Physics and Astronomy
  • Origination:
  • Footnote:
  • Description: The monodispersed hard-sphere system is one of the simplest models for the study of phase transitions. Despite intensive studies of crystallization and melting of hard-sphere face-centered cubic (FCC) crystals, the phase transformations of hard-sphere body-centered cubic (BCC) crystals have not been explored because hard spheres cannot form a stable BCC lattice. In fact, unstable BCC hard-sphere crystals and their related phase transformations can be experimentally achieved. Here, we measured the kinetics of the melting and solid-solid transformations of BCC hard-sphere crystals at various volume fractions via molecular dynamics simulations. When the volume fraction ϕ < 0.494, the system melts catastrophically. At ϕ > 0.545, the BCC crystal transforms to a metastable polycrystal consisting of FCC and hexagonal close-packed (HCP) domains, which is different from those crystallized from supercooled liquids, and then slowly equilibrates toward the FCC crystal. At 0.494 < ϕ < 0.545, the BCC crystal transforms to an intermediate-order metastable state consisting of BCC and non-crystal particles without FCC and HCP symmetries and then equilibrates toward the coexistence of the FCC crystal and liquid. We further studied the melting and BCC-FCC transitions of crystals composed of soft spheres with potential u(r) = ϵ(r/σ)−n. The unstable BCC crystals at n = 12, 9, 8 exhibit similar melting and BCC-FCC transitions as hard-sphere BCC crystals, while the metastable BCC crystals at n = 5, 6, 7 melt quickly at low densities but take very long time for the BCC-FCC transition at high densities. We also estimate the BCC-FCC interfacial energy and critical nucleus size. These results cast light on the melting and solid-solid transformations of atomic BCC crystals, which exist widely in nature.