• Media type: E-Article
  • Title: Autologous engineering of cartilage
  • Contributor: Emans, Pieter J.; van Rhijn, Lodewijk W.; Welting, Tim J. M.; Cremers, Andy; Wijnands, Nina; Spaapen, Frank; Voncken, J. Willem; Shastri, V. Prasad
  • imprint: Proceedings of the National Academy of Sciences, 2010
  • Published in: Proceedings of the National Academy of Sciences
  • Language: English
  • DOI: 10.1073/pnas.0907774107
  • ISSN: 0027-8424; 1091-6490
  • Keywords: Multidisciplinary
  • Origination:
  • Footnote:
  • Description: <jats:p>Treatment of full-thickness damage to hyaline cartilage is hampered by the limited availability of autologous healthy cartilage and the lengthy, cost-prohibitive cell isolation and expansion steps associated with autologous cartilage implantation (ACI). Here we report a strategy for de novo engineering of ectopic autologous cartilage (EAC) within the subperiosteal space (in vivo bioreactor), through the mere introduction of a biocompatible gel that might promote hypoxia-mediated chondrogenesis, thereby effectively overcoming the aforementioned limitations. The EAC is obtained within 3 wk post injection of the gel, and can be press-fit into an osteochondral defect where it undergoes remodeling with good lateral and subchondral integration. The implanted EAC showed no calcification even after 9 mo and attained an average O’Driscoll score of 11 (versus 4 for controls). An “on demand” autologous source of autologous cartilage with remodeling capacity is expected to significantly impact the clinical options in repair of trauma to articular cartilage.</jats:p>
  • Access State: Open Access