Description:
Abstract Using machine learning (ML) method to predict permeability of porous media has shown great potential in recent years. A current problem is the lack of effective models to account for highly porous media with dilated pores. This study includes (1) generation of media (porosity = 0.8) via a Boolean process, (2) the pore size distribution (PSD) control by using different groups of homogeneous packed spherical particles (3) PSD data obtainment using the spherical contact distribution model (4) computation of the permeability via LBM simulations, (4) training of artificial neuron network (ANN) and (5) analysis of the model. It is found that the PSD could outperform the previous geometry descriptors as an input of ML framework to deal with highly porous structures with different fractions of dilated pores, however there is still room for precision enhancement.