• Media type: E-Article
  • Title: BPS surface operators and calibrations
  • Contributor: Drukker, Nadav; Trépanier, Maxime
  • Published: IOP Publishing, 2023
  • Published in: Journal of Physics A: Mathematical and Theoretical, 56 (2023) 17, Seite 175403
  • Language: Not determined
  • DOI: 10.1088/1751-8121/acc771
  • ISSN: 1751-8113; 1751-8121
  • Keywords: General Physics and Astronomy ; Mathematical Physics ; Modeling and Simulation ; Statistics and Probability ; Statistical and Nonlinear Physics
  • Origination:
  • Footnote:
  • Description: <jats:title>Abstract</jats:title> <jats:p>We present here a careful study of the holographic duals of BPS surface operators in the 6d <jats:inline-formula> <jats:tex-math><?CDATA ${\cal N} = (2,0)$?></jats:tex-math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="aacc771ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> theory. Several different classes of surface operators have been recently identified and each class has a specific calibration form—a 3-form in <jats:inline-formula> <jats:tex-math><?CDATA $AdS_7\times S^4$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>A</mml:mi> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>S</mml:mi> <mml:mn>7</mml:mn> </mml:msub> <mml:mo>×</mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>4</mml:mn> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="aacc771ieqn2.gif" xlink:type="simple" /> </jats:inline-formula> whose pullback to the M2-brane world-volume is equal to the volume form. In all but one class, the appropriate forms are exact, so the action of the M2-brane is easily expressed in terms of boundary data, which is the geometry of the surface. Specifically, for surfaces of vanishing anomaly, it is proportional to the integral of the square of the extrinsic curvature. This can be extended to the case of surfaces with anomalies, by taking the ratio of two surfaces with the same anomaly. This gives a slew of new expectation values at large <jats:italic>N</jats:italic> in this theory. For one specific class of surface operators, which are Lagrangian submanifolds of <jats:inline-formula> <jats:tex-math><?CDATA ${\mathbb R}^4\subset {\mathbb R}^6$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msup> <mml:mrow> <mml:mrow> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>4</mml:mn> </mml:msup> <mml:mo>⊂</mml:mo> <mml:msup> <mml:mrow> <mml:mrow> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>6</mml:mn> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="aacc771ieqn3.gif" xlink:type="simple" /> </jats:inline-formula>, the structure is far richer and we find that the M2-branes are special Lagrangian submanifold of an appropriate six-dimensional almost Calabi-Yau submanifold of <jats:inline-formula> <jats:tex-math><?CDATA $AdS_7\times S^4$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mi>A</mml:mi> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>S</mml:mi> <mml:mn>7</mml:mn> </mml:msub> <mml:mo>×</mml:mo> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>4</mml:mn> </mml:msup> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="aacc771ieqn4.gif" xlink:type="simple" /> </jats:inline-formula>. This allows for an elegant treatment of many such examples.</jats:p>