You can manage bookmarks using lists, please log in to your user account for this.
Media type:
E-Article
Title:
spillR: spillover compensation in mass cytometry data
Contributor:
Guazzini, Marco;
Reisach, Alexander G;
Weichwald, Sebastian;
Seiler, Christof
Published:
Oxford University Press (OUP), 2024
Published in:
Bioinformatics, 40 (2024) 6
Language:
English
DOI:
10.1093/bioinformatics/btae337
ISSN:
1367-4811
Origination:
Footnote:
Description:
Abstract Motivation Channel interference in mass cytometry can cause spillover and may result in miscounting of protein markers. Chevrier et al. introduce an experimental and computational procedure to estimate and compensate for spillover implemented in their R package CATALYST. They assume spillover can be described by a spillover matrix that encodes the ratio between the signal in the unstained spillover receiving and stained spillover emitting channel. They estimate the spillover matrix from experiments with beads. We propose to skip the matrix estimation step and work directly with the full bead distributions. We develop a nonparametric finite mixture model and use the mixture components to estimate the probability of spillover. Spillover correction is often a pre-processing step followed by downstream analyses, and choosing a flexible model reduces the chance of introducing biases that can propagate downstream. Results We implement our method in an R package spillR using expectation-maximization to fit the mixture model. We test our method on simulated, semi-simulated, and real data from CATALYST. We find that our method compensates low counts accurately, does not introduce negative counts, avoids overcompensating high counts, and preserves correlations between markers that may be biologically meaningful. Availability and implementation Our new R package spillR is on bioconductor at bioconductor.org/packages/spillR. All experiments and plots can be reproduced by compiling the R markdown file spillR_paper.Rmd at github.com/ChristofSeiler/spillR_paper.