• Media type: E-Article
  • Title: Characterization of membrane vesicles in Alteromonas macleodii indicates potential roles in their copiotrophic lifestyle
  • Contributor: Fadeev, Eduard; Carpaneto Bastos, Cécile; Hennenfeind, Jennifer H; Biller, Steven J; Sher, Daniel; Wietz, Matthias; Herndl, Gerhard J
  • imprint: Oxford University Press (OUP), 2023
  • Published in: microLife
  • Language: English
  • DOI: 10.1093/femsml/uqac025
  • ISSN: 2633-6693
  • Origination:
  • Footnote:
  • Description: <jats:title>Abstract</jats:title> <jats:p>Bacterial membrane vesicles (MVs) are abundant in the oceans, but their potential functional roles remain unclear. In this study we characterized MV production and protein content of six strains of Alteromonas macleodii, a cosmopolitan marine bacterium. Alteromonas macleodii strains varied in their MV production rates, with some releasing up to 30 MVs per cell per generation. Microscopy imaging revealed heterogenous MV morphologies, including some MVs aggregated within larger membrane structures. Proteomic characterization revealed that A. macleodii MVs are rich in membrane proteins related to iron and phosphate uptake, as well as proteins with potential functions in biofilm formation. Furthermore, MVs harbored ectoenzymes, such as aminopeptidases and alkaline phosphatases, which comprised up to 20% of the total extracellular enzymatic activity. Our results suggest that A. macleodii MVs may support its growth through generation of extracellular ‘hotspots’ that facilitate access to essential substrates. This study provides an important basis to decipher the ecological relevance of MVs in heterotrophic marine bacteria.</jats:p>
  • Access State: Open Access