• Media type: E-Article
  • Title: The integrated three-point correlation function of cosmic shear
  • Contributor: Halder, Anik; Friedrich, Oliver; Seitz, Stella; Varga, Tamas N
  • Published: Oxford University Press (OUP), 2021
  • Published in: Monthly Notices of the Royal Astronomical Society, 506 (2021) 2, Seite 2780-2803
  • Language: English
  • DOI: 10.1093/mnras/stab1801
  • ISSN: 0035-8711; 1365-2966
  • Keywords: Space and Planetary Science ; Astronomy and Astrophysics
  • Origination:
  • Footnote:
  • Description: ABSTRACT We present the integrated three-point shear correlation function iζ± – a higher order statistic of the cosmic shear field – which can be directly estimated in wide-area weak lensing surveys without measuring the full three-point shear correlation function, making this a practical and complementary tool to two-point statistics for weak lensing cosmology. We define it as the one-point aperture mass statistic Map measured at different locations on the shear field correlated with the corresponding local two-point shear correlation function ξ±. Building upon existing work on the integrated bispectrum of the weak lensing convergence field, we present a theoretical framework for computing the integrated three-point function in real space for any projected field within the flat-sky approximation and apply it to cosmic shear. Using analytical formulae for the non-linear matter power spectrum and bispectrum, we model iζ± and validate it on N-body simulations within the uncertainties expected from the sixth year cosmic shear data of the Dark Energy Survey. We also explore the Fisher information content of iζ± and perform a joint analysis with ξ± for two tomographic source redshift bins with realistic shape noise to analyse its power in constraining cosmological parameters. We find that the joint analysis of ξ± and iζ± has the potential to considerably improve parameter constraints from ξ± alone, and can be particularly useful in improving the figure of merit of the dynamical dark energy equation of state parameters from cosmic shear data.
  • Access State: Open Access