• Media type: E-Article
  • Title: Quasar Island – three new z ∼ 6 quasars, including a lensed candidate, identified with contrastive learning
  • Contributor: Byrne, Xander; Meyer, Romain A; Farina, Emanuele Paolo; Bañados, Eduardo; Walter, Fabian; Decarli, Roberto; Belladitta, Silvia; Loiacono, Federica
  • Published: Oxford University Press (OUP), 2024
  • Published in: Monthly Notices of the Royal Astronomical Society, 530 (2024) 1, Seite 870-880
  • Language: English
  • DOI: 10.1093/mnras/stae902
  • ISSN: 0035-8711; 1365-2966
  • Origination:
  • Footnote:
  • Description: ABSTRACT Of the hundreds of z ≳ 6 quasars discovered to date, only one is known to be gravitationally lensed, despite the high lensing optical depth expected at z ≳ 6. High-redshift quasars are typically identified in large-scale surveys by applying strict photometric selection criteria, in particular by imposing non-detections in bands blueward of the Lyman-α line. Such procedures by design prohibit the discovery of lensed quasars, as the lensing foreground galaxy would contaminate the photometry of the quasar. We present a novel quasar selection methodology, applying contrastive learning (an unsupervised machine learning technique) to Dark Energy Survey imaging data. We describe the use of this technique to train a neural network which isolates an ‘island’ of 11 sources, of which seven are known z ∼ 6 quasars. Of the remaining four, three are newly discovered quasars (J0109−5424, z = 6.07; J0122−4609, z = 5.99; J0603−3923, z = 5.94), as confirmed by follow-up and archival spectroscopy, implying a 91 per cent efficiency for our novel selection method; the final object on the island is a brown dwarf. In one case (J0109−5424), emission below the Lyman limit unambiguously indicates the presence of a foreground source, though high-resolution optical/near-infrared imaging is still needed to confirm the quasar’s lensed (multiply imaged) nature. Detection in the g band has led this quasar to escape selection by traditional colour cuts. Our findings demonstrate that machine learning techniques can thus play a key role in unveiling populations of quasars missed by traditional methods.
  • Access State: Open Access