• Media type: E-Article
  • Title: Low-temperature atomic layer deposition of SiO 2 /Al 2 O 3 multilayer structures constructed on self-standing films of cellulose nanofibrils
  • Contributor: Putkonen, Matti; Sippola, Perttu; Svärd, Laura; Sajavaara, Timo; Vartiainen, Jari; Buchanan, Iain; Forsström, Ulla; Simell, Pekka; Tammelin, Tekla
  • imprint: The Royal Society, 2018
  • Published in: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
  • Language: English
  • DOI: 10.1098/rsta.2017.0037
  • ISSN: 1364-503X; 1471-2962
  • Keywords: General Physics and Astronomy ; General Engineering ; General Mathematics
  • Origination:
  • Footnote:
  • Description: <jats:p> In this paper, we have optimized a low-temperature atomic layer deposition (ALD) of SiO <jats:sub>2</jats:sub> using AP-LTO® 330 and ozone (O <jats:sub>3</jats:sub> ) as precursors, and demonstrated its suitability to surface-modify temperature-sensitive bio-based films of cellulose nanofibrils (CNFs). The lowest temperature for the thermal ALD process was 80°C when the silicon precursor residence time was increased by the stop-flow mode. The SiO <jats:sub>2</jats:sub> film deposition rate was dependent on the temperature varying within 1.5–2.2 Å cycle <jats:sup>−1</jats:sup> in the temperature range of 80–350°C, respectively. The low-temperature SiO <jats:sub>2</jats:sub> process that resulted was combined with the conventional trimethyl aluminium + H <jats:sub>2</jats:sub> O process in order to prepare thin multilayer nanolaminates on self-standing CNF films. One to six stacks of SiO <jats:sub>2</jats:sub> /Al <jats:sub>2</jats:sub> O <jats:sub>3</jats:sub> were deposited on the CNF films, with individual layer thicknesses of 3.7 nm and 2.6 nm, respectively, combined with a 5 nm protective SiO <jats:sub>2</jats:sub> layer as the top layer. The performance of the multilayer hybrid nanolaminate structures was evaluated with respect to the oxygen and water vapour transmission rates. Six stacks of SiO <jats:sub>2</jats:sub> /Al <jats:sub>2</jats:sub> O with a total thickness of approximately 35 nm efficiently prevented oxygen and water molecules from interacting with the CNF film. The oxygen transmission rates analysed at 80% RH decreased from the value for plain CNF film of 130 ml m <jats:sup>−2</jats:sup>  d <jats:sup>−1</jats:sup> to 0.15 ml m <jats:sup>−2</jats:sup>  d <jats:sup>−1</jats:sup> , whereas the water transmission rates lowered from 630 ± 50 g m <jats:sup>−2</jats:sup>  d <jats:sup>−1</jats:sup> down to 90 ± 40 g m <jats:sup>−2</jats:sup>  d <jats:sup>−1</jats:sup> . </jats:p> <jats:p>This article is part of a discussion meeting issue ‘New horizons for cellulose nanotechnology’.</jats:p>
  • Access State: Open Access