• Media type: E-Article
  • Title: Coloring, Distortions, and Puckering in Selected Intermetallic Structures from the Perspective of Group‐Subgroup Relations
  • Contributor: Pöttgen, Rainer
  • imprint: Wiley, 2014
  • Published in: Zeitschrift für anorganische und allgemeine Chemie
  • Language: English
  • DOI: 10.1002/zaac.201400023
  • ISSN: 0044-2313; 1521-3749
  • Origination:
  • Footnote:
  • Description: <jats:title>Abstract</jats:title><jats:p> Group‐subgroup relations are a compact and concise tool for structure systemization. The present review summarizes the use of Bärnighausen trees for classification of intermetallic structures into structural families. The overview starts with group‐subgroup relationships between the structures of the metallic elements (W, In, α‐Po, β‐Po, Pa, α‐Sn, β‐Sn) followed by examples for ordered close‐packed arrangements that derive from <jats:italic>fcc</jats:italic>, <jats:italic>hcp</jats:italic>, and <jats:italic>bcc</jats:italic> subcells (e.g. CuAu, Cu<jats:sub>3</jats:sub>Au, MoNi<jats:sub>4</jats:sub>, ZrAl<jats:sub>3</jats:sub>, FeAl, MoSi<jats:sub>2</jats:sub>). The main focus lies on more complex structures that derive from aristotypes with comparatively high space group symmetry: AlB<jats:sub>2</jats:sub>, Fe<jats:sub>2</jats:sub>P, U<jats:sub>3</jats:sub>Si<jats:sub>2</jats:sub>, BaAl<jats:sub>4</jats:sub>, La<jats:sub>3</jats:sub>Al<jats:sub>11</jats:sub>, NaZn<jats:sub>13</jats:sub>, CaCu<jats:sub>5</jats:sub>, and Re<jats:sub>3</jats:sub>B. The symmetry reductions arise from coloring of sites with different atoms or from distortions / puckering due to size restrictions (different radii of atoms). The resulting superstructures are discussed along with the consequences for diffraction experiments, chemical bonding, and physical properties.</jats:p>