• Media type: E-Article
  • Title: Mixed Heterotri‐ to Heteropentametallic Transition‐Metal Complexes: Synthesis, Characterization and Electrochemical Behavior
  • Contributor: Packheiser, Rico; Ecorchard, Petra; Rüffer, Tobias; Walfort, Bernhard; Lang, Heinrich
  • imprint: Wiley, 2008
  • Published in: European Journal of Inorganic Chemistry
  • Language: English
  • DOI: 10.1002/ejic.200800457
  • ISSN: 1434-1948; 1099-0682
  • Keywords: Inorganic Chemistry
  • Origination:
  • Footnote:
  • Description: <jats:title>Abstract</jats:title><jats:p>The synthesis and reaction chemistry of heteromultimetallic transition‐metal complexes are discussed. Complex [(η<jats:sup>2</jats:sup>‐dppf)(η<jats:sup>5</jats:sup>‐C<jats:sub>5</jats:sub>H<jats:sub>5</jats:sub>)Ru‐C≡C‐C<jats:sub>6</jats:sub>H<jats:sub>4</jats:sub>‐4‐PPh<jats:sub>2</jats:sub>] (<jats:bold>3</jats:bold>) [dppf = 1,1′‐bis(diphenylphosphanyl)ferrocene], accessible by treating [(η<jats:sup>2</jats:sup>‐dppf)(η<jats:sup>5</jats:sup>‐C<jats:sub>5</jats:sub>H<jats:sub>5</jats:sub>)RuCl] (<jats:bold>1</jats:bold>) with equimolar amounts of HC≡C‐C<jats:sub>6</jats:sub>H<jats:sub>4</jats:sub>‐4‐PPh<jats:sub>2</jats:sub> (<jats:bold>2</jats:bold>), gives on treatment with [(cod)RhCl]<jats:sub>2</jats:sub> (<jats:bold>4</jats:bold>), [(η<jats:sup>5</jats:sup>‐C<jats:sub>5</jats:sub>Me<jats:sub>5</jats:sub>)RhCl<jats:sub>2</jats:sub>]<jats:sub>2</jats:sub> (<jats:bold>6</jats:bold>), and [(tht)AuCl] (<jats:bold>8</jats:bold>) heterotrimetallic [(η<jats:sup>2</jats:sup>‐dppf)(η<jats:sup>5</jats:sup>‐C<jats:sub>5</jats:sub>H<jats:sub>5</jats:sub>)Ru‐C≡C‐C<jats:sub>6</jats:sub>H<jats:sub>4</jats:sub>‐4‐PPh<jats:sub>2</jats:sub>‐{Rh}] [<jats:bold>5</jats:bold>, {Rh} = (cod)RhCl; <jats:bold>7</jats:bold>, {Rh} = (η<jats:sup>5</jats:sup>‐C<jats:sub>5</jats:sub>Me<jats:sub>5</jats:sub>)RhCl<jats:sub>2</jats:sub>] and [(η<jats:sup>2</jats:sup>‐dppf)(η<jats:sup>5</jats:sup>‐C<jats:sub>5</jats:sub>H<jats:sub>5</jats:sub>)Ru‐C≡C‐C<jats:sub>6</jats:sub>H<jats:sub>4</jats:sub>‐4‐PPh<jats:sub>2</jats:sub>‐AuCl] (<jats:bold>9</jats:bold>), respectively. Tetra‐ and even pentametallic heteronuclear complexes can be prepared by following consecutive reaction sequences: Treatment of <jats:bold>9</jats:bold> with HC≡CR {<jats:bold>10a</jats:bold>, R = C<jats:sub>5</jats:sub>H<jats:sub>4</jats:sub>N‐4; <jats:bold>10b</jats:bold>, R = C<jats:sub>6</jats:sub>H<jats:sub>4</jats:sub>‐4‐C≡N; <jats:bold>10c</jats:bold>, R = bpy (= 2,2′‐<jats:italic>b</jats:italic>i<jats:italic>py</jats:italic>ridyl‐5‐yl); <jats:bold>12a</jats:bold>, R = bpy[Re(CO)<jats:sub>3</jats:sub>Cl]} in the presence of HNEt<jats:sub>2</jats:sub> and [CuI] gave [(η<jats:sup>2</jats:sup>‐dppf)(η<jats:sup>5</jats:sup>‐C<jats:sub>5</jats:sub>H<jats:sub>5</jats:sub>)Ru‐C≡C‐C<jats:sub>6</jats:sub>H<jats:sub>4</jats:sub>‐4‐PPh<jats:sub>2</jats:sub>‐Au‐C≡CR] {<jats:bold>11a</jats:bold>, R = C<jats:sub>5</jats:sub>H<jats:sub>4</jats:sub>N‐4; <jats:bold>11b</jats:bold>, R = C<jats:sub>6</jats:sub>H<jats:sub>4</jats:sub>‐4‐C≡N; <jats:bold>11c</jats:bold>, R = bpy; <jats:bold>13</jats:bold>, R = bpy[Re(CO)<jats:sub>3</jats:sub>Cl]}. Compound <jats:bold>11c</jats:bold> is the key starting material for complexes of higher nuclearity. Treatment of <jats:bold>11c</jats:bold> with [(nbd)Mo(CO)<jats:sub>4</jats:sub>] (<jats:bold>14</jats:bold>) afforded heterotetrametallic {(η<jats:sup>2</jats:sup>‐dppf)(η<jats:sup>5</jats:sup>‐C<jats:sub>5</jats:sub>H<jats:sub>5</jats:sub>)Ru‐C≡C‐C<jats:sub>6</jats:sub>H<jats:sub>4</jats:sub>‐4‐PPh<jats:sub>2</jats:sub>‐Au‐C≡C‐bpy[Mo(CO)<jats:sub>4</jats:sub>]} (<jats:bold>15</jats:bold>), whereas with [{[Ti](μ‐σ,π‐C≡CSiMe<jats:sub>3</jats:sub>)<jats:sub>2</jats:sub>}M]X [<jats:bold>16a</jats:bold>, MX = Cu(N≡CMe)PF<jats:sub>6</jats:sub>; <jats:bold>16b</jats:bold>, MX = AgOClO<jats:sub>3</jats:sub>] novel heteropentametallic [(η<jats:sup>2</jats:sup>‐dppf)(η<jats:sup>5</jats:sup>‐C<jats:sub>5</jats:sub>H<jats:sub>5</jats:sub>)Ru‐C≡C‐C<jats:sub>6</jats:sub>H<jats:sub>4</jats:sub>‐4‐PPh<jats:sub>2</jats:sub>‐Au‐C≡C‐bpy({[Ti](μ‐σ,π‐C≡CSiMe<jats:sub>3</jats:sub>)<jats:sub>2</jats:sub>}M)]X (<jats:bold>17a</jats:bold>, M = Cu, X = PF<jats:sub>6</jats:sub>; <jats:bold>17b</jats:bold>, M = Ag, X = ClO<jats:sub>4</jats:sub>) is formed. The reaction of <jats:bold>11a</jats:bold> with [{[Ti](μ‐σ,π‐C≡CSiMe<jats:sub>3</jats:sub>)<jats:sub>2</jats:sub>}Cu]OTf (<jats:bold>16c</jats:bold>) produced [(η<jats:sup>2</jats:sup>‐dppf)(η<jats:sup>5</jats:sup>‐C<jats:sub>5</jats:sub>H<jats:sub>5</jats:sub>)Ru‐C≡C‐C<jats:sub>6</jats:sub>H<jats:sub>4</jats:sub>‐4‐PPh<jats:sub>2</jats:sub>‐Au‐C≡C‐4‐C<jats:sub>5</jats:sub>H<jats:sub>4</jats:sub>N({[Ti](μ‐σ,π‐C≡CSiMe<jats:sub>3</jats:sub>)<jats:sub>2</jats:sub>}Cu)]OTf (<jats:bold>18</jats:bold>). The structures of <jats:bold>9</jats:bold>, <jats:bold>11b</jats:bold>, <jats:bold>11c</jats:bold>, and <jats:bold>12</jats:bold> in the solid state and the electrochemical behavior of selected complexes are also reported.(© Wiley‐VCH Verlag GmbH &amp; Co. KGaA, 69451 Weinheim, Germany, 2008)</jats:p>