• Media type: E-Article
  • Title: Enhancing the removal of hazardous pollutants from coke‐making wastewater by dosing activated carbon to a pilot‐scale activated sludge process
  • Contributor: Raper, Eleanor; Soares, Ana; Chen, Jane; Sutcliffe, Adam; Aries, Eric; Anderson, David; Stephenson, Tom
  • imprint: Wiley, 2017
  • Published in: Journal of Chemical Technology & Biotechnology
  • Language: English
  • DOI: 10.1002/jctb.5231
  • ISSN: 0268-2575; 1097-4660
  • Keywords: Inorganic Chemistry ; Organic Chemistry ; Pollution ; Waste Management and Disposal ; Fuel Technology ; Renewable Energy, Sustainability and the Environment ; General Chemical Engineering ; Biotechnology
  • Origination:
  • Footnote:
  • Description: <jats:title>Abstract</jats:title><jats:sec><jats:title>BACKGROUND</jats:title><jats:p>Powdered activated carbon (<jats:styled-content style="fixed-case">PAC</jats:styled-content>) was investigated for its ability to remove six polycyclic aromatic hydrocarbons (<jats:styled-content style="fixed-case">Σ6PAHs</jats:styled-content>) (fluoranthene, benzo[b + J]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3‐cd]pyrene, benzo[g,h,i]perylene), trace metals and colour from coke‐making wastewater when dosed to a pilot‐plant activated sludge process (<jats:styled-content style="fixed-case">ASP</jats:styled-content>). The <jats:styled-content style="fixed-case">ASP</jats:styled-content> had a volume of 0.68 m<jats:sup>3</jats:sup> and was operated to simulate the full‐scale <jats:styled-content style="fixed-case">ASP</jats:styled-content> treating coke wastewater from a steel works. Operational conditions included a flow rate of 0.78 m<jats:sup>3</jats:sup> day<jats:sup>−1</jats:sup>, a hydraulic retention time of 21 h, a sludge retention time of 38 days and a temperature of 27 °C. The <jats:styled-content style="fixed-case">ASP</jats:styled-content> was operated for a control period before <jats:styled-content style="fixed-case">PAC</jats:styled-content> was dosed directly into the aeration cell at a dose of 400 mg L<jats:sup>−1</jats:sup>.</jats:p></jats:sec><jats:sec><jats:title>RESULTS</jats:title><jats:p>Powdered activated carbon addition resulted in a 20% increase in removal efficiency of the <jats:styled-content style="fixed-case">Σ6PAHs</jats:styled-content>. Removal efficiency of trace metals was variable, but increased for nickel, chromium and cadmium by 22.6%, 20.5% and 12.4%, respectively. Improvement in colour removal efficiency was marginal at 5%.</jats:p></jats:sec><jats:sec><jats:title>CONCLUSION</jats:title><jats:p><jats:styled-content style="fixed-case">PAC</jats:styled-content> addition allowed the improvement of treatment efficiencies in the <jats:styled-content style="fixed-case">ASP</jats:styled-content> process at relatively low capital and operational costs, which may assist in reaching tighter effluent emission limits set for the industry. © 2017 Society of Chemical Industry</jats:p></jats:sec>