• Media type: E-Article
  • Title: 3D image fusion of whole‐heart dynamic cardiac MR perfusion and late gadolinium enhancement: Intuitive delineation of myocardial hypoperfusion and scar
  • Contributor: von Spiczak, Jochen; Mannil, Manoj; Kozerke, Sebastian; Alkadhi, Hatem; Manka, Robert
  • Published: Wiley, 2018
  • Published in: Journal of Magnetic Resonance Imaging, 48 (2018) 4, Seite 1129-1138
  • Language: English
  • DOI: 10.1002/jmri.26020
  • ISSN: 1053-1807; 1522-2586
  • Keywords: Radiology, Nuclear Medicine and imaging
  • Origination:
  • Footnote:
  • Description: <jats:sec><jats:title>Background</jats:title><jats:p>Since patients with myocardial hypoperfusion due to coronary artery disease (CAD) with preserved viability are known to benefit from revascularization, accurate differentiation of hypoperfusion from scar is desirable.</jats:p></jats:sec><jats:sec><jats:title>Purpose</jats:title><jats:p>To develop a framework for 3D fusion of whole‐heart dynamic cardiac MR perfusion and late gadolinium enhancement (LGE) to delineate stress‐induced myocardial hypoperfusion and scar.</jats:p></jats:sec><jats:sec><jats:title>Study Type</jats:title><jats:p>Prospective feasibility study.</jats:p></jats:sec><jats:sec><jats:title>Subjects</jats:title><jats:p>Sixteen patients (61 ± 14 years, two females) with known/suspected CAD.</jats:p></jats:sec><jats:sec><jats:title>Field Strength/Sequence</jats:title><jats:p>1.5T (nine patients); 3.0T (seven patients); whole‐heart dynamic 3D cardiac MR perfusion (3D‐PERF, under adenosine stress); 3D LGE inversion recovery sequences (3D‐SCAR).</jats:p></jats:sec><jats:sec><jats:title>Assessment</jats:title><jats:p>A software framework was developed for 3D fusion of 3D‐PERF and 3D‐SCAR. Computation steps included: 1) segmentation of the left ventricle in 3D‐PERF and 3D‐SCAR; 2) semiautomatic thresholding of perfusion/scar data; 3) automatic calculation of ischemic/scar burden (ie, pathologic relative to total myocardium); 4) projection of perfusion/scar values onto artificial template of the left ventricle; 5) semiautomatic coregistration to an exemplary heart contour easing 3D orientation; and 6) 3D rendering of the combined datasets using automatically defined color tables. All tasks were performed by two independent, blinded readers (J.S. and R.M.).</jats:p></jats:sec><jats:sec><jats:title>Statistical Tests</jats:title><jats:p>Intraclass correlation coefficients (ICC) for determining interreader agreement.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Image acquisition, postprocessing, and 3D fusion were feasible in all cases. In all, 10/16 patients showed stress‐induced hypoperfusion in 3D‐PERF; 8/16 patients showed LGE in 3D‐SCAR. For 3D‐PERF, semiautomatic thresholding was possible in all patients. For 3D‐SCAR, automatic thresholding was feasible where applicable. Average ischemic burden was 11 ± 7% (J.S.) and 12 ± 7% (R.M.). Average scar burden was 8 ± 5% (J.S.) and 7 ± 4% (R.M.). Interreader agreement was excellent (ICC for 3D‐PERF = 0.993, for 3D‐SCAR = 0.99).</jats:p></jats:sec><jats:sec><jats:title>Data Conclusion</jats:title><jats:p>3D fusion of 3D‐PERF and 3D‐SCAR facilitates intuitive delineation of stress‐induced myocardial hypoperfusion and scar.</jats:p><jats:p><jats:bold>Level of Evidence:</jats:bold> 2</jats:p><jats:p><jats:bold>Technical Efficacy:</jats:bold> Stage 2</jats:p><jats:p>J. Magn. Reson. Imaging 2018;48:1129–1138.</jats:p></jats:sec>