Description:
AbstractWe introduce the two‐stage stochastic minimum s − t cut problem. Based on a classical linear 0‐1 programming model for the deterministic minimum s − t cut problem, we provide a mathematical programming formulation for the proposed stochastic extension. We show that its constraint matrix loses the total unimodularity property, however, preserves it if the considered graph is a tree. This fact turns out to be not surprising as we prove that the considered problem is ‐hard in general, but admits a linear time solution algorithm when the graph is a tree. We exploit the special structure of the problem and propose a tailored Benders decomposition algorithm. We evaluate the computational efficiency of this algorithm by solving the Benders dual subproblems as max‐flow problems. For many tested instances, we outperform a standard Benders decomposition by two orders of magnitude with the Benders decomposition exploiting the max‐flow structure of the subproblems.