Description:
In recent years, multiphase steels have become a material of choice for use in the car manufacturing industry owing to their excellent mechanical properties. It is anticipated that in the years to come these steels will show the highest increase in usage. A particular aspect of their potential is that multiphase steels often show good bake hardening (BH) properties. The main factors that govern the microstructures and the properties of these steels are the chemical composition and the production process parameters.In this work two commercial cold rolled sheet steels with different carbon content were investigated. In order to produce dual phase (DP) steels with a ferrite‐martensite microstructure, the as‐received material was subjected to heat treatment simulating continuous galvanising line (CGL) cycles with an overageing zone before the zinc pot. After a first CGL cycle predominantly ferritic microstructures with small amounts of martensite, pearlite and retained austenite were obtained, which resulted in deviations from typical DP properties, e.g. in the occurrence of discontinuous yielding. A higher line speed led to improved mechanical properties. BH prestrain was varied between 0 and 10%. While only very little bake hardening was observed without prestrain, with increasing prestrain the amount of BH was evolving quickly towards larger values of more than 60 MPa. Generally, the BH values were somewhat larger for higher carbon content. Finally, an optimised CGL cycle was simulated at laboratory scale with changes in the process parameters. Thus, characteristic DP microstructures resulting in desired mechanical properties were obtained. For these optimised conditions, BH2 values in excess of 60 MPa were achieved for both steels investigated.