Altered metabolic pathways elucidated via untargeted in vivo toxicometabolomics in rat urine and plasma samples collected after controlled application of a human equivalent amphetamine dose
You can manage bookmarks using lists, please log in to your user account for this.
Media type:
E-Article
Title:
Altered metabolic pathways elucidated via untargeted in vivo toxicometabolomics in rat urine and plasma samples collected after controlled application of a human equivalent amphetamine dose
Contributor:
Hemmer, Selina;
Wagmann, Lea;
Meyer, Markus R.
Published:
Springer Science and Business Media LLC, 2021
Published in:
Archives of Toxicology, 95 (2021) 10, Seite 3223-3234
Language:
English
DOI:
10.1007/s00204-021-03135-8
ISSN:
0340-5761;
1432-0738
Origination:
Footnote:
Description:
AbstractAmphetamine is widely consumed as drug of abuse due to its stimulating and cognitive enhancing effects. Since amphetamine has been on the market for quite a long time and it is one of the most commonly used stimulants worldwide, to date there is still limited information on its effects on the metabolome. In recent years, untargeted toxicometabolomics have been increasingly used to study toxicity-related pathways of such drugs of abuse to find and identify important endogenous and exogenous biomarkers. In this study, the acute effects of amphetamine intake on plasma and urinary metabolome in rats were investigated. For this purpose, samples of male Wistar rats after a single dose of amphetamine (5 mg/kg) were compared to a control group using an untargeted metabolomics approach. Analysis was performed using normal and reversed phase liquid chromatography coupled to high-resolution mass spectrometry using positive and negative ionization mode. Statistical evaluation was performed using Welch’s two-sample t test, hierarchical clustering, as well as principal component analysis. The results of this study demonstrate a downregulation of amino acids in plasma samples after amphetamine exposure. Furthermore, four new potential biomarkers N-acetylamphetamine, N-acetyl-4-hydroxyamphetamine, N-acetyl-4-hydroxyamphetamine glucuronide, and amphetamine succinate were identified in urine. The present study complements previous data and shows that several studies are necessary to elucidate altered metabolic pathways associated with acute amphetamine exposure.