• Media type: E-Article
  • Title: New fractional maximal operators in the theory of martingale Hardy and Lebesgue spaces with variable exponents
  • Contributor: Weisz, Ferenc
  • Published: Springer Science and Business Media LLC, 2023
  • Published in: Fractional Calculus and Applied Analysis, 26 (2023) 1, Seite 1-31
  • Language: English
  • DOI: 10.1007/s13540-022-00121-4
  • ISSN: 1311-0454; 1314-2224
  • Origination:
  • Footnote:
  • Description: AbstractWe generalize the usual Doob maximal operator as well as the fractional maximal operator and introduce $$M_{\gamma ,s,\alpha }$$ M γ , s , α , a new fractional maximal operator for martingales. We prove that under the log-Hölder continuity condition of the variable exponents $$p(\cdot )$$ p ( · ) and $$q(\cdot )$$ q ( · ) , the maximal operator $$M_{\gamma ,s,\alpha }$$ M γ , s , α is bounded from the variable Lebesgue space $$L_{q(\cdot )}$$ L q ( · ) to $$L_{p(\cdot )}$$ L p ( · ) and from the variable Hardy space $$H_{q(\cdot )}$$ H q ( · ) to $$L_{p(\cdot )}$$ L p ( · ) , whenever $$0 \le \alpha <1$$ 0 ≤ α < 1 , $$0<q_-\le q_+ \le 1/\alpha $$ 0 < q - ≤ q + ≤ 1 / α , $$0<\gamma ,s<\infty $$ 0 < γ , s < ∞ , $$1/p(\cdot )= 1/q(\cdot )- \alpha $$ 1 / p ( · ) = 1 / q ( · ) - α and $$1/p_- - 1/p_+ < \gamma +s$$ 1 / p - - 1 / p + < γ + s . Moreover, for $$\alpha =0$$ α = 0 , the operator $$M_{\gamma ,s,0}$$ M γ , s , 0 generates equivalent quasi-norms on the Hardy spaces $$H_{p(\cdot )}$$ H p ( · ) .