• Media type: E-Article
  • Title: An investigation into intermittent electrification strategies and an analysis of resulting CO2 emissions using a high-fidelity train model
  • Contributor: Abdurahman, Bilal M.; Harrison, Tim; Ward, Christopher P.; Midgley, William J. B.
  • imprint: Springer Science and Business Media LLC, 2021
  • Published in: Railway Engineering Science
  • Language: English
  • DOI: 10.1007/s40534-021-00248-9
  • ISSN: 2662-4745; 2662-4753
  • Keywords: Electrical and Electronic Engineering ; Computer Science Applications ; Mechanical Engineering ; Transportation ; Computational Mechanics
  • Origination:
  • Footnote:
  • Description: <jats:title>Abstract</jats:title><jats:p>A near-term strategy to reduce emissions from rail vehicles, as a path to full electrification for maximal decarbonisation, is to partially electrify a route, with the remainder of the route requiring an additional self-powered traction option. These rail vehicles are usually powered by a diesel engine when not operating on electrified track and are referred to as bi-mode vehicles. This paper analyses the benefits of discontinuous electrification compared to continuous electrification using the CO<jats:sub>2</jats:sub> estimates from a validated high-fidelity bi-mode (diesel-electric) rail vehicle model. This analysis shows that 50% discontinuous electrification provides a maximum of 54% reduction in operational CO<jats:sub>2</jats:sub> emissions when compared to the same length of continuously electrified track. The highest emissions savings occurred when leaving train stations where vehicles must accelerate quickly to line speed. These results were used to develop a linear regression model for fast estimation of CO<jats:sub>2</jats:sub> emissions from diesel running and electrification benefits. This model was able to estimate the CO<jats:sub>2</jats:sub> emissions from a route to within 10% of that given by the high-fidelity model. Finally, additional considerations such as cost and the embodied CO<jats:sub>2</jats:sub> in electrification infrastructure were analysed to provide a comparison between continuous and discontinuous electrification. Discontinuous electrification can cost up to 56% less per reduction in lifetime emissions than continuous electrification and can save up to 2.3 times more lifetime CO<jats:sub>2</jats:sub> per distance electrified.</jats:p>
  • Access State: Open Access