• Media type: E-Article
  • Title: Walsh’s Conformal Map onto Lemniscatic Domains for Polynomial Pre-images I
  • Contributor: Schiefermayr, Klaus; Sète, Olivier
  • imprint: Springer Science and Business Media LLC, 2023
  • Published in: Computational Methods and Function Theory
  • Language: English
  • DOI: 10.1007/s40315-022-00462-4
  • ISSN: 2195-3724; 1617-9447
  • Keywords: Applied Mathematics ; Computational Theory and Mathematics ; Analysis
  • Origination:
  • Footnote:
  • Description: <jats:title>Abstract</jats:title><jats:p>We consider Walsh’s conformal map from the exterior of a compact set <jats:inline-formula><jats:alternatives><jats:tex-math>$$E \subseteq \mathbb {C}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>⊆</mml:mo> <mml:mi>C</mml:mi> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> onto a lemniscatic domain. If <jats:italic>E</jats:italic> is simply connected, the lemniscatic domain is the exterior of a circle, while if <jats:italic>E</jats:italic> has several components, the lemniscatic domain is the exterior of a generalized lemniscate and is determined by the logarithmic capacity of <jats:italic>E</jats:italic> and by the <jats:italic>exponents</jats:italic> and <jats:italic>centers</jats:italic> of the generalized lemniscate. For general <jats:italic>E</jats:italic>, we characterize the exponents in terms of the Green’s function of <jats:inline-formula><jats:alternatives><jats:tex-math>$$E^c$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>E</mml:mi> <mml:mi>c</mml:mi> </mml:msup> </mml:math></jats:alternatives></jats:inline-formula>. Under additional symmetry conditions on <jats:italic>E</jats:italic>, we also locate the centers of the lemniscatic domain. For polynomial pre-images <jats:inline-formula><jats:alternatives><jats:tex-math>$$E = P^{-1}(\Omega )$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>P</mml:mi> <mml:mrow> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> of a simply-connected infinite compact set <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Omega $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Ω</mml:mi> </mml:math></jats:alternatives></jats:inline-formula>, we explicitly determine the exponents in the lemniscatic domain and derive a set of equations to determine the centers of the lemniscatic domain. Finally, we present several examples where we explicitly obtain the exponents and centers of the lemniscatic domain, as well as the conformal map.</jats:p>