• Media type: E-Article
  • Title: The convergence of Euler products over p-adic number fields
  • Contributor: Delbourgo, Daniel
  • Published: Cambridge University Press (CUP), 2009
  • Published in: Proceedings of the Edinburgh Mathematical Society, 52 (2009) 3, Seite 583-606
  • Language: English
  • DOI: 10.1017/s0013091507000636
  • ISSN: 0013-0915; 1464-3839
  • Keywords: General Mathematics
  • Origination:
  • Footnote:
  • Description: AbstractWe define a topological space over the p-adic numbers, in which Euler products and Dirichlet series converge. We then show how the classical Riemann zeta function has a (p-adic) Euler product structure at the negative integers. Finally, as a corollary of these results, we derive a new formula for the non-Archimedean Euler–Mascheroni constant.
  • Access State: Open Access