• Media type: E-Article
  • Title: Parameterizing Vegetation Traits With a Process‐Based Ecohydrological Model and Xylem Water Isotopic Observations
  • Contributor: Li, K.; Kuppel, S.; Knighton, J.
  • imprint: American Geophysical Union (AGU), 2023
  • Published in: Journal of Advances in Modeling Earth Systems
  • Language: English
  • DOI: 10.1029/2022ms003263
  • ISSN: 1942-2466
  • Keywords: General Earth and Planetary Sciences ; Environmental Chemistry ; Global and Planetary Change
  • Origination:
  • Footnote:
  • Description: <jats:title>Abstract</jats:title><jats:p>Knowledge of plant hydraulic traits is critical for simulating terrestrial water storage, ecosystem water use, and tree responses to drought. The isotopic composition of tree xylem water (<jats:italic>δ</jats:italic><jats:sub>XYLEM</jats:sub>) has proven to be useful for understanding rooting strategies and for tracing terrestrial water flowpaths. Despite the broad collection of <jats:italic>δ</jats:italic><jats:sub>XYLEM</jats:sub> observations, few studies have estimated other plant traits from these data. We demonstrate the sensitivity of process‐based isotope‐enabled ecohydrological model (EcH<jats:sub>2</jats:sub>O‐iso) simulations of rooting depth distributions (<jats:italic>K</jats:italic><jats:sub>ROOT</jats:sub>), maximum stomatal conductance (<jats:italic>gs</jats:italic><jats:sub>MAX</jats:sub>), optimal growth temperatures (<jats:italic>T</jats:italic><jats:sub>OPT</jats:sub>), canopy light interception (K<jats:sub>BEERS</jats:sub>), stomatal sensitivity to vapor pressure deficits (<jats:italic>gs‐</jats:italic>VPD), and tree water storage capacity (<jats:italic>TreeV</jats:italic>) to <jats:italic>δ</jats:italic><jats:sub>XYLEM</jats:sub> observations. We sampled the <jats:italic>δ</jats:italic><jats:sub>XYLEM</jats:sub> of 30 Eastern hemlock (<jats:italic>Tsuga canadensis</jats:italic>) trees across 7 months, spanning a range of topographic positions and diameters. We calibrated the model 30 times with <jats:italic>δ</jats:italic><jats:sub>XYLEM</jats:sub> from each sampled tree. Calibrated values for <jats:italic>gs</jats:italic><jats:sub>MAX</jats:sub>, <jats:italic>K</jats:italic><jats:sub>BEERS</jats:sub>, and <jats:italic>K</jats:italic><jats:sub>ROOT</jats:sub> were validated with independent datasets of latent heat flux, canopy light interception, and xylem observations from independent hemlock stands. The calibrated values of several vegetation traits were significantly correlated with the diameters and topographic positions of the trees sampled in the field. These results indicate that <jats:italic>δ</jats:italic><jats:sub>XYLEM</jats:sub> reflects the characteristics and locations of the individual trees that are sampled, and therefore care must be taken in upscaling calibrated or measured plant traits for individual trees to larger horizontal scales. This research demonstrates that isotope‐enabled hydrological‐, land surface‐, and Earth systems‐models can leverage widely available water isotopic data to accurately estimate plant hydraulic traits.</jats:p>
  • Access State: Open Access