• Media type: E-Article
  • Title: Sec16 alternative splicing dynamically controls COPII transport efficiency
  • Contributor: Wilhelmi, Ilka; Kanski, Regina; Neumann, Alexander; Herdt, Olga; Hoff, Florian; Jacob, Ralf; Preußner, Marco; Heyd, Florian
  • Published: Springer Science and Business Media LLC, 2016
  • Published in: Nature Communications, 7 (2016) 1
  • Language: English
  • DOI: 10.1038/ncomms12347
  • ISSN: 2041-1723
  • Origination:
  • Footnote:
  • Description: AbstractThe transport of secretory proteins from the endoplasmic reticulum (ER) to the Golgi depends on COPII-coated vesicles. While the basic principles of the COPII machinery have been identified, it remains largely unknown how COPII transport is regulated to accommodate tissue- or activation-specific differences in cargo load and identity. Here we show that activation-induced alternative splicing of Sec16 controls adaptation of COPII transport to increased secretory cargo upon T-cell activation. Using splice-site blocking morpholinos and CRISPR/Cas9-mediated genome engineering, we show that the number of ER exit sites, COPII dynamics and transport efficiency depend on Sec16 alternative splicing. As the mechanistic basis, we suggest the C-terminal Sec16 domain to be a splicing-controlled protein interaction platform, with individual isoforms showing differential abilities to recruit COPII components. Our work connects the COPII pathway with alternative splicing, adding a new regulatory layer to protein secretion and its adaptation to changing cellular environments.
  • Access State: Open Access